PTEN deletion in prostate cancer cells does not associate with loss of RAD51 function: implications for radiotherapy and chemotherapy.

نویسندگان

  • Michael Fraser
  • Helen Zhao
  • Kaisa R Luoto
  • Cecilia Lundin
  • Carla Coackley
  • Norman Chan
  • Anthony M Joshua
  • Tarek A Bismar
  • Andrew Evans
  • Thomas Helleday
  • Robert G Bristow
چکیده

PURPOSE PTEN deletions in prostate cancer are associated with tumor aggression and poor outcome. Recent studies have implicated PTEN as a determinant of homologous recombination (HR) through defective RAD51 function. Similar to BRCA1/2-defective tumor cells, PTEN-null prostate and other cancer cells have been reported to be sensitive to PARP inhibitors (PARPi). To date, no direct comparison between PTEN and RAD51 expression in primary prostate tumors has been reported. EXPERIMENTAL DESIGN Prostate cancer cell lines and xenografts with known PTEN status (22RV1-PTEN(+/+), DU145-PTEN(+/-), PC3-PTEN(-/-)) and H1299 and HCT116 cancer cells were used to evaluate how PTEN loss affects RAD51 expression and PARPi sensitivity. Primary prostate cancers with known PTEN status were analyzed for RAD51 expression. RESULTS PTEN status is not associated with reduced RAD51 mRNA or protein expression in primary prostate cancers. Decreased PTEN expression did not reduce RAD51 expression or clonogenic survival following PARPi among prostate cancer cells that vary in TP53 and PTEN. PARPi sensitivity instead associated with a defect in MRE11 expression. PTEN-deficient cells had only mild PARPi sensitivity and no loss of HR or RAD51 recruitment. Clonogenic cell survival following a series of DNA damaging agents was variable: PTEN-deficient cells were sensitive to ionizing radiation, mitomycin-C, UV, H(2)O(2), and methyl methanesulfonate but not to cisplatin, camptothecin, or paclitaxel. CONCLUSIONS These data suggest that the relationship between PTEN status and survival following DNA damage is indirect and complex. It is unlikely that PTEN status will be a direct biomarker for HR status or PARPi response in prostate cancer clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی تغییرات بیانmiR-101و ارتباط آن با میزان بیان ژن‌های سرکوب‌کننده تومور PTENو MAGI2در سه رده سلولی سرطان پروستات

Introduction: Defects in PTEN gene play an important role in the initiation of the prostate cancer. MAGI2 is recognized as a frame which assists in stabilizing PTEN protein and enhances its tumor suppressor function. As miR-101 down-regulates MAGI2 expression, it can indirectly cause to reduce the PTEN activity. Methods:LnCap, PC3 and DU-145 prostate cancer cell lines were studied in order to ...

متن کامل

Does PTEN loss impair DNA double-strand break repair by homologous recombination?

The tumor suppressor PTEN is frequently lost in cancer cells, resulting in altered radiation and drug sensitivity. However, the role of PTEN in DNA repair is controversial. Detailed studies in prostate cancer cells now indicate PTEN does not regulate RAD51 expression or homologous recombination and is not a biomarker for PARP inhibitor sensitivity.

متن کامل

Chemotherapy-induced Ovarian Failure And The Related Indices In Breast Cancer Patients

Background and Objective: It is well known that menstrual period and ovarian function are affected by chemotherapy. Although breast cancer is the most common cause of chemotherapy in women and ovarian hormones have very important direct and indirect effects on overall survival, disease-free survival, and...

متن کامل

Effect of Hyperthermia on self-renewality of prostate cancer stem cells

Introduction: Prostate cancer (PCa) is the most prevalent malignant tumor in the male population worldwide and it is the second leading cause of cancer-related death in males. PCa is almost incurable due to the resistance of PCa to conventional treatments. Cancer stem cells (CSCs) theory suggests that a small subpopulation of cancer cells is responsible for tumor development, ...

متن کامل

The role of Rad51 protein in radioresistance of spheroid model of DU145 prostate carcinoma cell line

Background: Rad51 is a protein with critical role in double strand break repair. Down-regulation of this protein has a significant effect in radiosensitivity of some cell lines like prostate carcinoma. Compared to monolayer cell culture model, the spheroids are more resistant to radiation. The aim of the current study was to determine the Rad51 protein level in DU145 spheroids, and monol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2012